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Abstract. Free-space optical information transfer through diffusive media is critical in many applications, such
as biomedical devices and optical communication, but remains challenging due to random, unknown per-
turbations in the optical path. We demonstrate an optical diffractive decoder with electronic encoding to
accurately transfer the optical information of interest, corresponding to, e.g., any arbitrary input object or
message, through unknown random phase diffusers along the optical path. This hybrid electronic-optical
model, trained using supervised learning, comprises a convolutional neural network-based electronic encoder
and successive passive diffractive layers that are jointly optimized. After their joint training using deep learning,
our hybrid model can transfer optical information through unknown phase diffusers, demonstrating gener-
alization to new random diffusers never seen before. The resulting electronic-encoder and optical-decoder
model was experimentally validated using a 3D-printed diffractive network that axially spans <70λ, where
λ ¼ 0.75 mm is the illumination wavelength in the terahertz spectrum, carrying the desired optical information
through random unknown diffusers. The presented framework can be physically scaled to operate at different
parts of the electromagnetic spectrum, without retraining its components, and would offer low-power and
compact solutions for optical information transfer in free space through unknown random diffusive media.

Keywords: optical information transfer; electronic encoding; optical decoder; diffractive neural network; diffusers.

Received Mar. 30, 2023; revised manuscript received Jun. 29, 2023; accepted for publication Jul. 13, 2023; published online
Aug. 28, 2023.

© The Authors. Published by SPIE and CLP under a Creative Commons Attribution 4.0 International License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

[DOI: 10.1117/1.AP.5.4.046009]

1 Introduction
Free-space optical communication has been an active research
area and has gained significant interest due to its unique ad-
vantages, such as large bandwidth and high transmission
capacity.1–4 It has various applications in, e.g., remote sensing,
underwater communication, and medical devices.5–8 One of the
challenges that limits optical data transmission in free space with
high fidelity is the existence of diffusive random media in the
optical path, distorting the optical wavefront, which causes
inevitable information loss during the wave propagation.9–11 One
approach to mitigate the negative impact of such random dif-
fusers along the optical path has been single-pixel detection with

several amplitude-only two-dimensional (2D) encoding patterns
used to illuminate the object/scene.12–16 However, this approach
is relatively slow, since a series of amplitude-only illumination
patterns needs to be sequentially generated and transmitted as
optical information carriers for each input object or message;
furthermore, a digital reconstruction algorithm is required to
reveal the input objects through a sequence of structured illu-
mination patterns. Another potential solution involves using
adaptive optics to correct distortions;17–19 however, the spatial
light modulators (SLMs) and feedback algorithms employed in
adaptive optics increase the cost and complexity of such sys-
tems. Motivated by the widespread use of deep learning,
recent research has also adopted deep neural networks in optical
image transmission through scattering media,20–24 increasing the
processing speed and robustness to the distortions caused by*Address all correspondence to Aydogan Ozcan, ozcan@ucla.edu
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random diffusers. Nevertheless, all these methods need digital
computation to decode, reconstruct, or extract useful in-
formation from the distorted transmitted signals, which can be
energy-intensive and time-consuming.25–28

In this work, we demonstrate a jointly optimized electronic-
encoder neural network and an all-optical diffractive decoder
model for optical information transfer through random unknown
diffusers. This electronic-optical design (Fig. 1) is composed of a
convolutional neural network (CNN) that encodes the input
image information of interest (to be transmitted) into a 2D phase
pattern, like an encrypted code, which is all-optically decoded by
a jointly trained/optimized diffractive processor that reconstructs
the image of the input information at its output plane, despite the
presence of random unknown phase diffusers that are constantly
changing/evolving (see Video 1). In addition to phase encoding
of input information of interest, we also report that amplitude
encoding can be used as an alternative scheme for communi-
cation through random unknown diffusers using a jointly trained
diffractive decoder. Our all-optical diffractive information
decoder consists of passive diffractive layers with a compact
axial span of <70λ and can rapidly decode the encoded optical
information (corresponding to any arbitrary input object or
message) through random phase diffusers without any digital
postprocessing. We experimentally validated the success of this
approach using terahertz radiation (λ ¼ 0.75 mm) and a 3D-
printed diffractive network, demonstrating the feasibility of the
diffractive decoder with electronic encoding for optical in-
formation transmission through random unknown diffusers. The
optical decoder of the presented hybrid model can be scaled
physically (through expansion or shrinkage) to operate at dif-
ferent parts of the electromagnetic spectrum without the need for

retraining its diffractive features. As a result, the presented
technique holds potential for wide-ranging applications, such as
the transmission of biomedical sensing and imaging data in
implantable systems, underwater optical communication, and
data transmission through turbulent atmospheric conditions.

2 Results

2.1 Design of a Diffractive Decoder with Electronic
Encoding for Optical Information Transfer
through Unknown Random Diffusers

Figure 1(b) shows the operational pipeline of the presented
electronic-encoder and optical-decoder model for optical in-
formation transfer through random phase diffusers. A CNN-
based encoder (see Appendix) was trained to convert any given
input image to be transferred into a phase-encoded pattern,
illuminated by a uniform plane wave. The corresponding optical
field distorted by random unknown phase diffusers was then
decoded by the diffractive network to all-optically recover the
original image at its output field–of-view (FOV).

First, we analyze the impact of the encoder CNN on the
optical information transfer through unknown random diffusers
present in the optical path, and quantitatively explore its ne-
cessity, as opposed to a diffractive decoder that is trained alone.
In this analysis, we compared it against the architecture of our
previous work,29,30 which was used to see amplitude objects
through random diffusers using a diffractive neural network, as
shown in Fig. 2(a). Without any encoder neural network present,
this diffractive processor could see through random unknown
diffusers after its training with hundreds to thousands of examples
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Fig. 1 Pipeline of the hybrid electronic encoder and optical diffractive decoder for optical in-
formation transfer through random unknown diffusers. (a) Schematic drawing of the presented
diffractive decoder, which all-optically decodes the encoded information distorted by random
phase diffusers without the need for a digital computer. (b) Workflow of the hybrid electronic-
optical model: the electronic neural network encodes the input objects into 2D phase patterns and
the all-optical diffractive neural network decodes the information transmitted through random,
unknown phase diffusers.
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of random diffusers, successfully generalizing to see through new
random diffusers never seen before. However, with the increase
in the distance between the input objects and the random phase
diffuser plane, a performance drop was observed, as shown in
Fig. 2(c). Here we used the Pearson correlation coefficient (PCC)
to assess the quality of the output images synthesized by the
diffractive network as a function of the Fresnel number (F ¼ a2

dλ),
where a is the half-width of the input object FOV and d is the
axial distance between the input plane and the unknown phase
diffuser plane, which was swept from d ∼ 13λ to 93λ (see

Appendix). These comparative results shown in Figs. 2(a) and
2(c) reveal that while a diffractive decoder alone can be trained
to successfully generalize to see through unknown random
diffusers, its all-optical image reconstruction quality drops as d
increases to more than ∼50 λ (corresponding to F < ∼20) for a
diffuser correlation length of L ∼ 5 λ. For example, consider the
extreme case of d approaching 0 (i.e., F → ∞): in this case, it is
expected that a diffractive decoder alone can create a diffraction-
limited image of the object at its output FOV, since the problem of
this special case boils down to a spatially incoherent31 imaging
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Fig. 2 Comparison between all-optical diffractive networks and the hybrid electronic-optical
models for transferring optical information through random unknown diffusers. (a) Schematic of a
four-layer diffractive network trained to all-optically reconstruct the amplitude images of input
objects through random phase diffusers without electronic encoding. (b) Schematic of a four-layer
diffractive decoder with an electronic encoder jointly trained to decode the encoded optical image
through random unknown diffusers. (c) The information transmission fidelity (PCC) of the two
approaches (all-optical versus hybrid) as a function of the Fresnel number (F ) of the diffractive
system. All the parameters were identical in the two approaches being compared, except for
the existence of the electronic encoder (at the front end of the hybrid approach).
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system where the impact of a random phase diffuser rapidly
changing at d ¼ 0 can be considered as spatially incoherent
illumination of a static amplitude-only object. As d increases,
however, each randomly changing phase grain at the diffuser
plane will start introducing perturbations to spherical waves
that originate from a larger number of the object points at the
input plane due to diffraction across d, making the image
reconstruction a more difficult problem. This is at the heart of
the performance reduction observed in Figs. 2(a) and 2(c) for
the diffractive decoder alone operating at d > ∼50 λ (F < ∼20)
for L ∼ 5 λ. The all-optical image reconstruction examples of
the handwritten digit “8” with only the diffractive decoder layers
(no electronic-encoder network) also confirm this conclusion in
Fig. 2(a), where the contour of the digit “8” became un-
recognizable when F < ∼20.

To break through this limitation and extend the capabilities of
diffractive neural networks to communicate through random
unknown diffusers, we jointly trained an electronic encoding
neural network to collaborate with the all-optical diffractive
decoder network for transferring optical information through
random unknown phase diffusers, covering a much larger span
of d and F as shown in Figs. 2(b) and 2(c). To achieve this
enhanced performance with the hybrid (electronic-optical)
model, a data-driven supervised learning strategy was utilized to

transfer any optical information or message of interest through
random unknown phase diffusers. Specifically, we trained a
CNN-based electronic neural network (see Fig. S1 in the
Supplementary Material), which encoded the input samples
from the MNIST data set into ½0; π� phase-only 2D patterns
(codes), and a four-layer diffractive network was jointly opti-
mized with this CNN to be able to decode the optical fields
distorted by random unknown diffusers at the output FOV. This
decoding part and the reconstruction of the object images are
performed all-optically and rapidly completed at the speed-of-
light propagation through thin passive layers, without any
external power source. Multiple (n ¼ 20) randomly generated
diffusers, modeled as thin phase masks, were introduced in
each training epoch to build generalization capability for both
the electronic encoder and the diffractive decoder against the
distortions caused by random phase diffusers, as shown in
Fig. 3(a). The correlation length (L) was used to characterize
random diffusers with respect to their effective grain size, and all
the random diffusers used in the training and blind testing were
set to have the same correlation length, L ¼ 5λ (see Appendix).
During the training stage, handwritten digits were fed to the
electronic encoder, and the resulting encoded phase patterns
were illuminated by a uniform plane wave, propagating through
the corresponding random diffuser and the successive diffractive
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Fig. 3 Optical information transfer through random phase diffusers using electronic encoding
and diffractive decoding. (a) Random phase diffusers with a correlation length L ¼ 5λ used for
training and testing the presented joint electronic-optical model. (b) Phase profiles of the trained
diffractive layers of the optical decoder. (c) Examples of optical information encoded by an
electronic-encoder CNN that is jointly trained with an optical decoder; output images processed by
the all-optical decoder are also shown on the right. (d) Sample images captured by an aberration-
free diffraction-limited lens.
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layers to form the intensity profiles at the output plane.
The height values of the diffractive features at each layer
were adjusted through stochastic gradient descent-based error
backpropagation by minimizing a PCC-based loss function
between the target optical information and the decoded output
intensity profiles (see Appendix). The encoder and the decoder
were trained simultaneously for 100 epochs, i.e., N ¼ 100n ¼
2000 different random diffusers were used during the entire
training process. Figure 3(b) shows the resulting diffractive
layers of the trained diffractive decoder.

To demonstrate the efficacy of this trained hybrid electronic
encoder and optical decoder for transferring optical information
through random phase diffusers, we first compared its perfor-
mance to that of a conventional lens-based image transmission
system (see Appendix). The imaging results of the same objects
through the same diffusers, as shown in Fig. 3(d), exhibited blurry
intensity profiles of handwritten digits “2,” “7,” and “8” when
captured by an ideal lens. These blurry images clearly illustrate
the negative impact of the random phase diffusers within the
optical path, making it impossible to recognize the transmitted
images with the naked eye. In contrast, the jointly trained

electronic-optical system, comprising an electronic encoder/front
end and an optical diffractive decoder/back end, can successfully
transmit and receive these images through unknown new phase
diffusers, as shown in Fig. 3(c), indicating the strong resilience of
the hybrid system against the distortions caused by random
diffusers during the signal transmission process.

To shed more light on the generalization ability of the hybrid
model, we further tested it with additional handwritten digits
sampled from the test set that were never used during the
training stage; these test objects were individually distorted by
two newly generated diffusers that were never encountered
during the training (termed as new diffusers), as shown in Fig. 4,
left two columns. Additional results of this hybrid electronic-
optical model for transferring new optical images of interest
through random unknown phase diffusers that are constantly
changing are shown in Video 1. All of these resulting output
images are easily recognizable compared to the blurry coun-
terparts of the ideal lens, revealing the generalization of the
trained electronic-encoder and optical-decoder model to new
objects and new random phase diffusers that have never been
seen before.
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Fig. 4 Simulation results of the hybrid electronic-optical model for optical information transmission
through unknown random phase diffusers. L ¼ 5λ.
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To provide examples of “external generalization” to test
objects of different types, we used binary gratings with 8λ
linewidth, which were not included in the training data set; such
linear gratings are vastly different compared to handwritten
digits used during training and were employed here to exemplify
the external generalization of the jointly trained system for
transferring spatial information corresponding to different types
of objects through new random diffusers (see Fig. 4, right two
columns). After being encoded by the electronic encoder CNN
and transmitted through the random phase diffusers, the gratings
were successfully decoded by the diffractive optical decoder,
even though our electronic-optical model was trained using only
MNIST handwritten digits. The successful transmission of
different types of object information through random, unknown
phase diffusers indicates that our hybrid electronic-encoder and
optical-decoder system jointly approximates a general-purpose
optical information transfer system, without overfitting to a
special class of objects. The spatial resolution of this jointly
trained electronic-optical model can be further improved by
including training images that contain higher spatial frequency
information32 as opposed to using relatively low-resolution
training image sets such as MNIST.

2.2 Impact of the Number of Diffractive Layers
on the Optical Information Transfer Fidelity

The depth advantages that deeper diffractive architectures
possess include better generalization capacity for all-optical
inference tasks, which has been supported in the literature by
both theoretical and empirical evidence.29,31,33–37 To quantita-
tively evaluate the impact of the number (K) of diffractive layers

on the accuracy of optical information transfer through un-
known random diffusers, we trained three hybrid models, where
the architectures of the electronic encoder were kept identical,
but the diffractive optical decoders had different numbers of
trainable diffractive layers in each model. Figure 5 reports the
output results of three exemplary handwritten digits and a test
grating object information transferred through a new unknown
random diffuser using these three hybrid models with K ¼ 2, 4,
and 6. The visualization of the decoded images and the cor-
responding PCC values in Fig. 5 illustrate that the two-layer
diffractive decoder network had a relatively lower image
reconstruction performance through an unknown random
diffuser (despite still providing recognizable images at the
output plane). Our results further reveal that the information
transmission quality improved significantly as we increased
the number of diffractive layers in the decoder architecture, as
shown in Fig. 5. The fact that the K ¼ 2 decoder still worked
(despite a compromise in its output image quality) indicates the
effectiveness of the joint training strategy, where the electronic-
encoder CNN can efficiently collaborate with the diffractive
optical decoder and partially compensate for its reduced degrees
of freedom caused by fewer diffractive layers in its architecture.

2.3 Influence of Limited Phase Bit Depth

In the analyses presented above, we did not impose a bit
depth restriction during the training and testing stages, and the
encoded phase patterns and the corresponding diffractive
heights on each layer were set with a 16-bit depth. In certain
applications, the available bit depth of the encoded phase pattern
would be limited due to, e.g., the resolution of the SLM;
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similarly, the bit depth of the diffractive features will be con-
strained by the 3D fabrication resolution. Motivated to mitigate
these challenges, we quantized the electronic encoder and the
diffractive decoder that were trained with 16 bits into lower
quantization levels in the test stage and investigated the in-
fluence of the limited bit depths of the encoded phases’ patterns
and the diffractive layers on the quality of the optical in-
formation transfer through random new diffusers. Figure 6(a)

reports the results of this comparative analysis for several
combinations of encoded phase patterns and diffractive de-
coders with different bit depths. The unconstrained electronic-
optical hybrid model’s output results are shown at the top for
reference. In this comparison, we first kept the bit depth of the
encoded phase patterns as 16-bit while quantizing the diffractive
decoder trained with 16-bit to 2-bit, 3-bit, or 4-bit—performing
a form of ablation study. The output images of three MNIST
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with restricted bit-depth phase patterns and decoder pairs. The average PCC value for 10,000
handwritten test digits transmitted through n ¼ 20 unknown (new) random diffusers is provided in
each case. (b) The resulting mean PCC values are compared for various combinations of phase
bit-depth. L ¼ 5λ.
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handwritten digits and a grating-like object are displayed in
Fig. 6(a), revealing a quick improvement in the information
transfer performance with increasing diffractive decoder bit
depth. We utilized the diffractive decoder (trained under 16-bit
depth) using merely 2 bits, and the output image was blurry;
however, the output of the 3-bit diffractive decoder improved
significantly and the gratings were resolvable [see Fig. 6(a)]. As
we further increased the bit depth to 4, the output performance
became approximately identical to that of the same model
without any bit-depth constraints, as shown in Fig. 6(a).

On the other hand, when we limited the bit depth of the
encoded phase patterns while maintaining the diffractive
decoder at 16 bits, it was surprising to find out that even with
only 1 bit, i.e., binary-encoded phase patterns, the encoder–
decoder system remained capable of transferring the input
images of interest through unknown random phase diffusers
with acceptable output performance [Fig. 6(a)]. Furthermore,
the results obtained using the 2-bit phase encoder were com-
parable to the unconstrained model [Fig. 6(a), top]. These
ablation studies highlight the strong robustness of our in-
formation encoding strategy to the changes in the phase bit
depth that is available. Figure 6(b) reports additional results for
various combinations of quantized encoded phase and quantized

diffractive decoder, showing that a larger phase bit depth
generally leads to better output image performance.

These earlier results were ablation studies performed after the
joint training of the electronic-optical model by reducing the
available bit depth at the testing phase of the encoder–decoder
pair. To explore the minimum requirement of bit depth for
accurately transferring optical information through random
diffusers, next we adopted the bit-depth limitation during the
training process and created three additional electronic-optical
models with different levels of bit depth available; see Fig. 7.
When both the encoded phase patterns and the diffractive op-
tical decoder were constrained to only 2 bits, the transferred
information suffered from significant distortions at the output;
however, the contours of some images were still visible.
Keeping a bit depth of 2 for the phase encoder while increasing
the diffractive decoder’s bit-depth to 4 achieved much better
information transfer, where the spatial details of the input
images were successfully reconstructed after passing through
random phase diffusers. For the combination where both the
electronic phase encoder and the optical diffractive models had
4 bits of phase, the performance of optical information transfer
through random diffusers was comparable to the hybrid model
trained and tested with 16 bits (see Fig. 7).

Input
Electronic 
encoder

Encoded phase Diffractive 
decoder Output

0 1
2-bit

1010

2-bit

0

0.54

Phase 
diffuser

0 1
4-bit

1010
0

0.82

Input
Electronic 
encoder

Encoded phase Diffractive 
decoder Output2-bit

Phase 
diffuser

0 1
4-bit

0
1010

0.85

Input
Electronic 
encoder

Encoded phase Diffractive 
decoder Output4-bit

Phase 
diffuser

Fig. 7 The electronic encoder and the diffractive decoder trained and tested with different levels
of phase bit-depth. The average PCC values are listed for each case. L ¼ 5λ.

Li et al.: Optical information transfer through random unknown diffusers using electronic encoding…

Advanced Photonics 046009-8 Jul∕Aug 2023 • Vol. 5(4)



2.4 Experimental Demonstration of Optical Information
Transfer through Unknown Random Phase
Diffusers Using a Diffractive Decoder with
Electronic Encoding

The presented hybrid electronic-optical model was demon-
strated experimentally based on a terahertz continuous-wave
(CW) system, operating at λ ¼ 0.75 mm, as shown in Figs. 8(c)
and 8(d) (see Appendix). The resulting phase patterns encoded
from the input images by the electronic-encoder CNN were
physically 3D-printed and illuminated by the terahertz source,
propagating forward through a 3D-printed unknown random
diffuser and the diffractive decoder layers, positioned sequen-
tially. For this proof-of-concept experimental demonstration,
we jointly trained an electronic-encoder CNN and a diffractive
decoder with two layers (K ¼ 2), each consisting of 120 × 120
diffractive neurons with a size of 0.4 mm. Owing to the limi-
tations posed by the 3D printer’s resolution and build size, we
adjusted the dimensions of the optical elements and operated at
a Fresnel number of 9.4, thereby maintaining the difficulty of
the information transfer task through random diffusers [see

Fig. 2(c)]. This electronic-optical model was trained with n ¼
20 different random diffusers for 100 epochs, i.e., N ¼ 2000
different random diffusers were utilized during the training,
each with a correlation length of L ∼ 5λ. Moreover, an addi-
tional output power efficiency loss was introduced to make
the diffractive decoder strike a good balance between the in-
formation transfer performance and diffraction efficiency (see
Appendix). To mitigate the negative impact of potential mis-
alignments during the fabrication and assembly of the optical
components, we also introduced random displacements to the
diffractive layers (on purpose) in the training process, “vacci-
nating” the diffractive decoder against such imperfections (see
Appendix for details).38 Figure 9 shows the experimental results
of the optical information transfer through unknown random
phase diffusers using a 3D-printed diffractive decoder and
electronic encoding. The experimental measurements match the
simulation results very well, confirming the feasibility of the
hybrid electronic-optical model to effectively transfer optical
information and messages of interest through random unknown
phase diffusers.
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3 Discussion
We presented a joint electronic-encoder and optical-decoder
model designed to transfer optical information through
random unknown phase diffusers, outperforming (1) an ideal
(diffraction-limited) imaging system and (2) a system solely

employing trainable diffractive surfaces, as demonstrated in
our previous work.30 With an electronic-encoder CNN encoding
the original input images into 2- to 4-bit depth phase patterns,
a jointly trained diffractive optical decoder becomes much
more resilient to the distortions caused by random, unknown
phase diffusers along the optical path, leading to enhanced

Input Experiment SimulationEncoded phase

All-optical
diffractive 
decoder 

Electronic
encoder

0

1

0

1

0
5 55

Diffuser

10mm

Fig. 9 Experimental results of optical information transfer through an unknown random phase
diffuser using the 3D-printed diffractive decoder with electronic encoding.
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performance and higher data transmission fidelity. The dif-
fractive optical decoder, consisting only of passive diffractive
layers, can decode the encoded information through random
phase diffusers at the speed of light and enable the hybrid model
to work with low power consumption. The overall volume of the
diffractive optical decoder is also compact, with an axial span of
<70λ. Our experimental results in the terahertz part of the
spectrum confirmed the applicability of our hybrid electronic-
encoder and optical-decoder model for transferring optical in-
formation through unknown random diffusers.

Note that the phase encoding strategy employed in our
models could also be interchanged with an amplitude encoding
scheme, while sustaining a comparable level of performance and
data transmission fidelity across random, unknown diffusers.
To showcase this, we trained an alternative hybrid electronic-
optical model using amplitude encoding to transfer optical
information through random phase diffusers with a correlation
length of L ∼ 5λ, maintaining all the other parameters the same
as the model shown in Fig. 1. The average of the PCC values
resulting from the blind testing of this hybrid model with un-
known objects distorted by unknown diffusers was 0.88, similar
to the performance of the reported hybrid model with phase-
only encoding, underscoring the applicability of the amplitude
encoding scheme.

In our results reported so far, the positioning of the diffusers
remained constant during the training and testing phases. To
assess the impact of unknown diffuser location on the data
transmission fidelity, we blindly tested the model shown in
Fig. 1(a), trained using a fixed diffuser location, with varying
axial positions spanning −10λ to 10λ around the designed
position; see Fig. S2 in the Supplementary Material. These blind
testing results revealed that our hybrid model, despite being
trained with a fixed diffuser position, maintained satisfactory
data transmission fidelity within a diffuser axial position un-
certainty range of �2λ; however, beyond this range, a con-
siderable drop in fidelity was observed, as depicted in Fig. S2 in
the Supplementary Material (green curve). To further enhance
the electronic-optical hybrid model’s resilience to diffuser
position uncertainty, we adopted a “vaccination” strategy,
similar to what we employed in the training of the experimental
model (see Appendix), by randomly shifting the unknown
diffusers around their designated axial position. Subsequently,
four additional hybrid models with different amounts of vac-
cination, covering diffuser shift levels of �1λ; 2λ; 4λ, and 8λ
were trained; after their training, we report the data transmission
fidelity results of these vaccinated models as a function of the
diffuser location uncertainty in Fig. S2 in the Supplementary
Material. These results reveal that, by intentionally introduc-
ing uncertainty in the diffuser axial position during training,
we can build an electronic-encoder/optical-decoder pair with
improved resilience to random and unknown variations in the
diffuser position, while retaining a decent data transmission
fidelity, making this framework more suitable for real-world
applications, where the position of the scattering media can vary
randomly.

Following the previous literature on random phase diffus-
ers,21,22,39,40 in this work, we used thin optical elements with
random phase patterns to simulate diffusers; the exploration of
volumetric diffusers, which can be described by several thin
phase diffusers and split-step beam propagation, is an exciting
future research direction.41,42 In addition, wavelength-division
multiplexing, widely used in fiber-optic communication to

enable high transmission bandwidths,43 can be integrated into
the presented jointly trained models, allowing simultaneous
information transfer at multiple wavelengths and increasing
the overall capacity of information transfer through random
unknown diffusers. Finally, our method can be physically scaled
(expanded/shrunk) with respect to the illumination wavelength
without retraining its components and can operate at different
parts of the electromagnetic spectrum to transfer optical in-
formation through random scattering media.

4 Appendix

4.1 Electronic Encoder Design

We used a CNN to encode the input object into a 2D phase
pattern. The network architecture is shown in Fig. S1 in the
Supplementary Material, which has convolutional layers with
3 × 3 filters followed by batch normalization (BN)44 and a
parametric rectified linear unit.45 We performed downsampling
directly by max pooling. The network ends with two fully
connected layers and a sigmoid activation layer.

4.2 All-Optical Diffractive Decoder Model

The monochrome illumination with a wavelength of λ was used
for optical information transfer through unknown random
diffusers. The diffractive layers were modeled as thin optical
modulation elements where the complex transmission co-
efficient of the layer m located at z ¼ zm can be modeled as

tmðx; y; zmÞ ¼ amðx; y; zmÞ expðjϕmðx; y; zmÞÞ: (1)

Both the amplitude modulation amðx; y; zmÞ and the phase
modulation ϕmðx; y; zmÞ can be written as a function of the
diffractive neuron’s thickness hmðx; y; zmÞ and the incident
wavelength λ,

amðx; y; zmÞ ¼ exp

�
−κðλÞ 2πhmðx; y; zmÞ

λ

�
; (2)

ϕmðx; y; zmÞ ¼ ðnðλÞ − nairÞ
2πhmðx; y; zmÞ

λ
; (3)

where nðλÞ and κðλÞ are the refractive index and the extinction
coefficient of the material, respectively, i.e., the complex re-
fractive index can be written as ñðλÞ ¼ nðλÞ þ jκðλÞ. In this
work, the height of each neuron was defined as

hmðx; y; zmÞ ¼
hmax

2
· ðsinðhpðx; y; zmÞÞ þ 1Þ þ hbase; (4)

where hp is the variable optimized during the data-driven
training procedure. The actual height of each diffractive neuron
hmðx; y; zmÞ was calculated by setting hmax ¼ 1.33λ and a fixed
base thickness of hbase ¼ 0.67λ.

We modeled the random diffusers as pure phase elements,
whose complex transmission tDðx; yÞ can be calculated using
the refractive index difference between the air and the diffuser
material [Δn ¼ nðλÞ − nair ≈ 0.725]. The random height map
hDðx; yÞ was defined as

Li et al.: Optical information transfer through random unknown diffusers using electronic encoding…

Advanced Photonics 046009-11 Jul∕Aug 2023 • Vol. 5(4)

https://doi.org/10.1117/1.AP.5.4.046009.s01
https://doi.org/10.1117/1.AP.5.4.046009.s01
https://doi.org/10.1117/1.AP.5.4.046009.s01
https://doi.org/10.1117/1.AP.5.4.046009.s01
https://doi.org/10.1117/1.AP.5.4.046009.s01


hD ¼ rem

�
W � KðσÞ þ hbase;

λmax

nðλÞ − nair

�
; (5)

where remð·Þ denotes the remainder after division, and W is a
random height matrix with each pixel, i.e., Wðx; yÞ, following a
normal distribution with a mean of μ and a standard deviation of
σ0, i.e.,

Wðx; yÞ ∼N ðμ; σ0Þ. (6)

KðσÞ is a zero-mean Gaussian smoothing kernel with a standard
deviation of σ, and “ � ” denotes the 2D convolution operation.
The phase-autocorrelation function Rdðx; yÞ of a random phase
diffuser [tDðx; yÞ] is calculated as

Rdðx; yÞ ¼ expð−πðx2 þ y2Þ∕L2Þ; (7)

where L refers to the correlation length of the random diffuser.
By numerically fitting the function expð−πðx2 þ y2Þ∕L2Þ to
Rdðx; yÞ, we can statistically get the correlation length L of
randomly generated diffusers. In this work, for μ ¼ 25λ,
σ0 ¼ 8λ, and σ ¼ 4λ, we calculated the average correlation
length as L ∼ 5.3λ based on 2000 randomly generated phase
diffusers.

Adjacent optical elements (e.g., input phase patterns, random
diffusers, diffractive layers, and detectors) are optically con-
nected by free-space light propagation in air, which was
formulated using the Rayleigh–Sommerfeld equation.46 The
propagation can be modeled as a shift-invariant linear system
with the impulse response,

wðx; y; zÞ ¼ z
r2

�
1

2πr2
þ 1

jλ

�
exp

�
j2πr
λ

�
; (8)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and j ¼ ffiffiffiffiffiffi−1p

.
Considering a plane wave that is incident at a phase-

modulated object oðx; y; z ¼ 0Þ positioned at z ¼ 0, we can
write the distorted image right after the random phase diffuser
tDðx; yÞ located at z0 as

u0ðx; y; z0Þ ¼ tDðx; yÞ · ½oðx; y; z ¼ 0Þ � wðx; y; z0Þ�: (9)

This distorted field is used as the input field of subsequent
diffractive layers. And the optical field umðx; y; zmÞ right after
the mth diffractive layer at z ¼ zm can be written as

umðx;y;zmÞ ¼ tmðx;yÞ · ½um−1ðx;y;zm−1Þ �wðx;y;ΔzmÞ�; (10)

where Δzm ¼ zm − zm−1 is the axial distance between two
successive diffractive layers. After being modulated by all theM
diffractive layers, the optical field was collected at an output
plane that was Δzd ¼ 13.3λ away from the last diffractive layer.
The intensity is used as the decoded output intensity profile of
the diffractive decoder,

Iðx; yÞ ¼ juMðx; y; zMÞ � wðx; y;ΔzdÞj2: (11)

4.3 Digital Implementation

For the diffractive decoder, we sampled the 2D space with a grid
of 0.4λ, which is also the size of each diffractive neuron on the
diffractive layers. Every diffractive layer and random diffusers

had a size of 96λ × 96λ (240 pixels × 240 pixels). A coherent
light illumination with a wavelength of λ ≈ 0.75 mm was
assumed. Both the input and output FOVs were set to be
64λ × 64λ, which corresponds to 160 pixels × 160 pixels. The
axial distances between the input phase object and the random
diffuser, the diffuser and the first diffractive layer, two suc-
cessive diffractive layers, and the last diffractive layer and
the output plane were set to be 80λ, 40λ, 13.3λ, and 13.3λ,
respectively.

During the joint training process of the electronic encoder
and the diffractive decoder using deep learning, we first
normalized the handwritten digits from the MNIST training
data set to the range [0, 1] and bilinearly interpolated them
from 28 pixels × 28 pixels to 32 pixels × 32 pixels (Iobject).
After being transformed by the electronic encoder into a
32 × 32 pixel phase distribution, the resulting encoded phase
patterns were upsampled to 160 pixels × 160 pixels (ϕi) using
the “nearest” mode to match the size of the input FOV. In
addition, we interpolated Iobject to 160 pixels × 160 pixels with
“nearest” mode as well to serve as the target output Itarget. In our
simulation optical forward model, we assumed the material
absorption of the objects, diffusers, and diffractive layers to be
zero [i.e., κðλÞ ¼ 0], which is a reasonable assumption con-
sidering that these are thin optical elements. Accordingly,
the input phase objects can be expressed as o ¼ expðjπϕiÞ,
where ϕi ∈ ½0; 1�.

During the training, n ¼ 20 uniquely different phase dif-
fusers were randomly generated at each epoch. In each training
iteration, a batch of B ¼ 10 different objects from the MNIST
handwritten digit data set was sampled randomly and fed to the
electronic encoder; each corresponding encoded phase pattern
in a batch was numerically duplicated n times and separately
perturbed by a set of n randomly selected diffusers. Therefore,
B × n different optical fields were obtained, and these distorted
fields were individually forward-propagated through the same
state of the diffractive network. Therefore, we obtained B × n
different decoded output intensity profiles at the output plane
(Ioutput_1;…; Ioutput_Bn), which were used for the PCC-based
training loss function calculation,

Loss ¼
P

Bn
i¼1f−PðItarget; Ioutput_iÞg

Bn
; (12)

where PðItarget; Ioutput_iÞ denotes the PCC value between the
output image and the target image, calculated using

PCC ¼
PðIoutputðx; yÞ − IoutputÞ · ðItargetðx; yÞ − ItargetÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðIoutputðx; yÞ − IoutputÞ2 · ðItargetðx; yÞ − ItargetÞ2

q :

(13)

To validate the necessity of employing a hybrid electronic-
encoder and optical-decoder model for optical information
transmission through random phase diffusers, we trained both
the hybrid model and the diffractive decoder independently
using various values of d ∈ f13.3λ; 26.7λ; 40λ; 53.3λ; 66.7λ;
80λ; 93.3λg, corresponding to Fresnel numbers of ðF ¼ a2

dλÞ ∈f76.8; 38.4; 25.6; 19.2; 15.4; 12.8; 11.0g, calculated for an input
object width of a ¼ 32λ.

The electronic encoder and the diffractive optical decoder
were jointly trained using Python (v3.8.16) and PyTorch (v1.11,
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Meta AI) with a GeForce RTX 3090 graphical processing unit
(Nvidia Corp.), an Intel® Core™ i9-12900KF central processing
unit (Intel Corp.), and 64 GB of RAM, running the Windows 11
operating system (Microsoft Corp.). The calculated loss
values were backpropagated to update the weights and biases
of the electronic encoder and diffractive neuron heights
using the Adam optimizer47 with a decaying learning rate of
0.99epoch × 10−3, where epoch refers to the current epoch
number. Training a typical joint electronic-optical model takes
∼5 h to complete with 100 epochs and n ¼ 20 diffusers
per epoch.

4.4 Quantization of the Encoded Phase and the
Diffractive Decoder Layers

To evaluate the performance of the hybrid electronic-encoder
and optical-decoder models under limited bit-depth cases, we
quantized the encoded phase and/or the heights of the features
on the diffractive layers into lower quantization levels. For the
encoded phase patterns with a maximum phase of π, the range
½0; π� was equally divided into 2bit depth steps. For example, the
1-bit encoded phase is binary encoded with 0 and π, while the
2-bit encoded case has f0; π

3
; 2π
3
; πg, i.e., four steps. In the same

way, we quantized the diffractive decoder heights in the range
of ½hbase; hbase þ hmax�.

4.5 Terahertz Experimental Setup and Design

The experimental setup is shown in Fig. 8(b). The terahertz
source used in the experiment was an AMC (modular amplifier,
WR9.0M SGX, Virginia Diode Inc.; multiplier chain, WR4.3x2
WR2.2x2, Virginia Diode Inc.) with a compatible diagonal horn
antenna (WR2.2, Virginia Diode Inc.). The input of the AMC
was a 10 dBm RF input signal at 11.1111 GHz (fRF1) and after
being multiplied 36 times, the output signal was CW radiation at
0.4 THz. The AMC was also modulated with a 1 kHz square
wave for lock-in detection. The distance between the exit
aperture of the horn antenna and the object plane of the 3D-
printed diffractive optical network was about 75 cm. After
passing the diffractive decoder network, the output signal was
2D scanned with a 1.2 mm step by a single-pixel Mixer (WRI
2.2, Virginia Diode Inc.) placed on an XY positioning stage,
built by combining two linear motorized stages (NRT100,
Thorlabs). A 10 dBm RF signal at 11.0833 GHz (fRF2) was sent
to the detector as a local oscillator to down-convert the signal to
1 GHz for further measurement. The down-converted signal was
amplified by a low-noise amplifier (ZRL-1150-LN+, Mini-
Circuits) and filtered by a 1 GHz (�10 MHz) bandpass filter
(Electronics 3C40-1000/T10-O/O, KL). The signal first passed
through a low-noise power detector (ZX47-60, Mini-Circuits)
and then was measured by a lock-in amplifier (SR830, Stanford
Research) with the 1 kHz square wave used as the reference
signal. The lock-in amplifier readings were calibrated into a
linear scale.

The phase objects, diffusers, and diffractive layers used for
experimental demonstration were fabricated using a 3D printer
(Objet30 Pro, Stratasys). The absorption of the 3D printing
material was taken into account and estimated by Eq. (2) for
the phase patterns, diffusers, and diffractive layers during the
training. For the two-layer decoder model used in the ex-
perimental demonstration, each diffractive layer consisted of
120 × 120 diffractive neurons, each with a lateral size of
0.4 mm. The diffuser had the same size as the diffractive layers

with 48 mm × 48 mm (120 pixels × 120 pixels). The size of
the input and output FOV was designed as 33.6 mm ×
33.6 mm (84 pixels × 84 pixels). The axial distances between
the input phase object and the random diffuser, the diffuser and
first diffractive layer, two successive diffractive layers, and the
last diffractive layer and the output plane were set to be
53.3λ; 40λ; 40λ, and 26.7λ, respectively.

To build the resilience of the diffractive decoder layers to
potential mechanical misalignments in the experimental testing,
the diffractive decoder was “vaccinated” with deliberate random
shifts during the training.38 For this vaccination process, a ran-
dom lateral displacement (Dx;Dy) was added to the diffractive
layers, where Dx and Dy were randomly and independently
sampled, i.e.,

Dx ∼ U½−0.5λ; 0.5λ�; Dy ∼ U½−0.5λ; 0.5λ�: (14)

A random axial displacement of Dz was also added to the
axial separations between any two consecutive diffractive
planes. Accordingly, the axial distance between any two con-
secutive diffractive layers was set to dþDz, where d is the
designed distance and Dz was randomly sampled,

Dz ∼ U½−1.5λ; 1.5λ�: (15)

Considering the material absorption and minimum detectable
signal in our experiments, we also added another power penalty
to balance the output quality and the diffraction efficiency.
We calculated the power efficiency EðIoutputÞ of the diffractive
network as

EðIoutputÞ ¼
P

Ioutputðx; yÞP joðx; yÞj2 ; (16)

and the corresponding diffraction efficiency penalty was cal-
culated as follows:

Losseff ¼ maxf0; Etarget − EðIoutputÞg; (17)

where Etarget was the target power efficiency, which was set to
0.04 empirically. Consequently, the total loss function that
included the power-efficiency penalty was used for the training
of our experimentally tested model and can be rewritten as

Loss ¼
P

Bn
i¼1f−PðItarget; IoutputiÞg

Bn

þ
P

Bn
i¼1 maxf0; Etarget − EðIoutput_iÞg

Bn
: (18)

4.6 Image Contrast Enhancement

To better visualize the images, we digitally enhanced the
contrast of the experimental measurements using a built-in
MATLAB function (imadjust), which by default saturates the
top 1% and the bottom 1% of the pixel values and maps the
resulting images to a dynamic range between 0 and 1. All
the quantitative data analyses, including PCC calculations and
resolution test target results, are based on raw data without
applying image contrast enhancement.
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4.7 Simulation of the Standard Lens-Based Image
Transmission System

We numerically implemented a conventional lens-based image
transmission system to evaluate the impact of a given random
diffuser on the output image. A Fresnel lens was designed to
have a focal length (f) of 136.1λ and a pupil diameter of 96λ,
whose transmission coefficient tLðx; yÞ was formulated as

tLðx; yÞ ¼ Pðx; yÞ exp
�
−j π

λf
ðx2 þ y2Þ

�
; (19)

where Pðx; yÞ is the pupil function,

Pðx; yÞ ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< 96λ

0; otherwise
: (20)

The lens was placed 2f (272.2λ) away from the input objects,
and the image plane was also 2f (272.2λ) away from the lens.
The light propagation was calculated using the angular spectrum
method. And the intensity profiles at the image plane were
collected as the results of imaging through random phase
diffusers using an ideal diffraction-limited lens.

Code, Data, and Materials Availability
All the data and methods needed to evaluate the conclusions of
this work are present in the main text. The deep-learning models
reported in this work used standard libraries and scripts that are
publicly available in PyTorch. Additional data can be requested
from the corresponding author.
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